Convolutional spike-triggered covariance analysis for neural subunit models
نویسندگان
چکیده
Subunit models provide a powerful yet parsimonious description of neural responses to complex stimuli. They are defined by a cascade of two linear-nonlinear (LN) stages, with the first stage defined by a linear convolution with one or more filters and common point nonlinearity, and the second by pooling weights and an output nonlinearity. Recent interest in such models has surged due to their biological plausibility and accuracy for characterizing early sensory responses. However, fitting poses a difficult computational challenge due to the expense of evaluating the log-likelihood and the ubiquity of local optima. Here we address this problem by providing a theoretical connection between spike-triggered covariance analysis and nonlinear subunit models. Specifically, we show that a “convolutional” decomposition of a spike-triggered average (STA) and covariance (STC) matrix provides an asymptotically efficient estimator for class of quadratic subunit models. We establish theoretical conditions for identifiability of the subunit and pooling weights, and show that our estimator performs well even in cases of model mismatch. Finally, we analyze neural data from macaque primary visual cortex and show that our moment-based estimator outperforms a highly regularized generalized quadratic model (GQM), and achieves nearly the same prediction performance as the full maximum-likelihood estimator, yet at substantially lower cost.
منابع مشابه
Efficient and direct estimation of a neural subunit model for sensory coding
Many visual and auditory neurons have response properties that are well explained by pooling the rectified responses of a set of spatially shifted linear filters. These filters cannot be estimated using spike-triggered averaging (STA). Subspace methods such as spike-triggered covariance (STC) can recover multiple filters, but require substantial amounts of data, and recover an orthogonal basis ...
متن کاملStatistical analysis of neural data: Classification-based approaches: spike-triggered averaging, spike-triggered covariance, and the linear-nonlinear cascade model
0.
متن کاملGot a moment or two? Neural models and linear dimensionality reduction
Il Memming Park, Evan Archer, Nicholas Priebe, and Jonathan Pillow A popular approach for investigating the neural code is via dimensionality reduction (DR): identifying a low-dimensional subspace of stimuli that modulate a neuron’s response. The two most popular DR methods for spike train response involve first and second moments of the spike-triggered stimulus distribution: the spike-triggere...
متن کاملCharacterizing Neural Gain Control using Spike-triggered Covariance
Spike-triggered averaging techniques are effective for linear characterization of neural responses. But neurons exhibit important nonlinear behaviors, such as gain control, that are not captured by such analyses. We describe a spike-triggered covariance method for retrieving suppressive components of the gain control signal in a neuron. We demonstrate the method in simulation and on retinal gan...
متن کاملLearning Quadratic Receptive Fields from Neural Responses to Natural Stimuli
Models of neural responses to stimuli with complex spatiotemporal correlation structure often assume that neurons are selective for only a small number of linear projections of a potentially high-dimensional input. In this review, we explore recent modeling approaches where the neural response depends on the quadratic form of the input rather than on its linear projection, that is, the neuron i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015